

Note

Two new neolignan glycosides from *Pteris multifida* Poir

Zheng Xu-dong*, Hu Hao-bin & Hu Huai-sheng

College of Chemistry and Chemical Engineering, Longdong University, Qingyang 745000, China

E-mail: zhenxd@ldxy.edu.cn

Received 2 April 2007; accepted (revised) 31 January 2008

Two new neolignan glycosides, named as multifidoside A **1** and B **2**, together with four known compounds have been isolated from the roots of *Pteris multifida* Poir. The structures of multifidoside A and B have been characterized by spectroscopic and chemical means as (7S, 8S)- Δ^7 -2,9'-dihydroxy-5'-methoxy-7,3'-dioxy-8,4'-neolignan-4-O- β -D-apiofuranosyl-(1 \rightarrow 6)- β -D-glucopyranoside and (7S, 8S)- Δ^7 -2,9,9'-trihydroxy-7,3'-dioxy-8,4'-neolignan-4-O- β -D-apiofuranosyl-(1 \rightarrow 6)- β -D-glucopyranoside. The known compounds are identified by comparing their spectral data with those of authentic samples or data reported in the literature.

Keywords: *Pteris multifida* Poir, neolignan glycoside, (7S, 8S)- Δ^7 -2, 9'-dihydroxy-5'-methoxy-7, 3'-dioxy-8,4'-neolignan-4-O- β -D-apiofuranosyl-(1 \rightarrow 6)- β -D-glucopyranoside, (7S, 8S)- Δ^7 -2,9, 9'-trihydroxy-7, 3'-dioxy-8, 4'-neolignan-4-O- β -D-apiofuranosyl-(1 \rightarrow 6)- β -D-glucopyranoside, multifidoside A, multifidoside B

Pteris multifida Poir is widely distributed in the south and southwest districts of China (Chinese name “fengweicao”)¹, which has been mainly used as a traditional Chinese folk drug for the treatment of eczema, haematemesis, enteritis, diarrhea, bacillary dysentery cold and are also known to have anticancer and antibacterial effects². However, very little is known about its chemical constituents except for antimutagenic activity³. A previous paper reported the isolation and characterization of six compounds from EtOAc fraction obtained by partition of the EtOH extract⁴. In continuation of the phytochemical research on this plant, is now reported the isolation and structural elucidation of two new neolignan glycosides, multifidoside A, **1** and B, **2** from the *n*-BuOH fraction of the EtOH extract, along with the four known compounds (**Figure 1**), scaphopetalone **3** (Ref. 5), (-)-isolariciresinol 3 α -O- β -apiofuranosyl-(1 \rightarrow 2)-O- β -D-glucopyranoside **4** (Ref. 6) 6,7-dihydroxy-3'-methoxy-4',5'-methyl lenedioxyisoflavone 6-O- β -D-xylopyranosyl-(1 \rightarrow 6)- β -D-glucopyranoside **5** (Ref. 7) polyporusterone I, **6** (ref. 8).

Compound **1** (**Figure 1**), to which is assigned the name multifidoside A, was obtained as white amorphous powder and has a molecular formula of C₂₈H₃₂O₁₃, determined by HRFAB-MS which showed a quasi-molecular formula ion peak at *m/z* 659.2289 [M+H]⁺ (calcd. for C₃₀H₃₈O₁₅, 658.2211). This formula indicated 12 degrees of unsaturation. The ¹³C NMR and DEPT spectra of **1** clearly displayed 30 carbon signals (2 \times CH₃, 4 \times CH₂, 16 \times CH, 8 \times C), of which 11 could be assigned to a glucose unit (δ _C 104.5, 74.8, 77.5, 71.1, 77.2, 67.8) and an apiose unit (δ _C 111.1, 77.8, 80.4, 75.0, 65.8), and the remaining 19 carbon signals were assigned to the aglycone. The UV-Vis spectrum showed the absorption bands at 208, 266 nm. Its IR spectrum (KBr) showed the absorption bands at 3328 (hydroxyl), 1630 (olefinic C=C), 1601 and 1516 cm⁻¹ (phenyl). The ¹H and ¹³C NMR spectra of **1** showed the presence of two *meta*-coupling aromatic protons signals [δ _H 6.98 (1H, d, *J*=1.7 Hz) and 6.83 (1H, d, *J*=1.7 Hz), δ _C 110.8 and 116.8], three *asym*-coupling aromatic protons signals [δ _H 6.42 (1H, d, *J*=2.4 Hz), 6.44 (1H, dd, *J*=7.9, 2.4 Hz) and 6.96 (1H, d, *J*=7.9 Hz), δ _C 103.9, 108.7 and 116.2], one methoxyl group [δ _H 3.76 (3H, s), δ _C 55.5], a (*E*)-coniferyl alcohol signals [δ _H 4.03 (2H, br d, *J*=5.7 Hz), 6.39 (1H, d, *J*=15.3 Hz) and 6.20 (1H, dd, *J*=15.3, 5.7 Hz), δ _C 61.5, 128.8 and 126.7], (ref 9), two methenyl signals [δ _H 4.79 (1H, d, *J*=8.0 Hz) and 4.33 (1H, dq, *J*=8.0, 6.4 Hz), δ _C 79.5 and 72.9], a methyl signal [δ _H 1.19 (3H, d, *J*=6.6 Hz), δ _C 17.2], one hydroxyl signal [δ _H 9.68 (1H, s, HO-2), δ _C 154.8 (C-2)], and two anomeric protons of sugars [δ _H 4.81 (1H, d, *J*=7.5 Hz, H-1'') and 5.28 (1H, d, *J*=2.2 Hz, H-1''), the corresponding anomeric carbon signals at δ _C 104.5 (C-1'') and 111.1 (C-1'')]. Comparison of the ¹H and ¹³C NMR data of **1** with those of eusiderin E (Ref. 10) indicated that **1** is a 7,3'-dioxy-8,4'-neolignan glycoside. In HMBC experiment, the correlations of δ _C 145.8 (C-4) with δ _H 4.81 (H-1'' of Glc)/6.42 (H-3)/6.44 (H-5)/6.96 (H-6); δ _C 131.2 (C-1') with δ _H 6.39 (H-7)/6.83 (H-6')/6.98 (H-2'); δ _C 149.0 (C-5') with δ _H 3.76 (-OMe)/6.83 (H-6'); and δ _C 154.8 (C-2) with δ _H 6.42 (H-3)/6.96 (H-6), suggested that the site of attachment of the disaccharide chain, (*E*)-coniferyl alcohol side-chain, the methoxyl and hydroxyl groups were at C-4, C-1', C-5' and C-2 of the aglycone, respectively.

On acid hydrolysis, compound **1** gave glucose and apiose respectively, which was compared with authentic sample by co-TLC, showing the presence of D-glucose and D-apiose. In addition, it was deduced from the FAB-MS spectral observation of *m/z* 507 [M+H-132]⁺ and *m/z* 345 [M+H-132-162]⁺ fragment ions, arising from the elimination of an apiose and a glucose unit, indicating the apiose was terminal sugars and the glucose was attached to the aglycone. Comparison of ¹³C NMR data of the sugar moieties with literature values¹¹ revealed that the glucose was present in pyranoside form and the apiose was in furanoside form. The HMBC experiment of **1** showed long-range correlations (Figure 2) between the H-1'' (δ_H 5.28) of apiose and the C-6'' (δ_C 67.8) of glucose as well as between the H-6'' (δ_H 4.05/3.96) of glucose and the C-1''' (δ_C 111.1) of apiose, thus suggesting the linkage of apiose-(1→6)-glucose. The relative stereochemistry of **1** was determined based on the ¹³C NMR spectra data and the *J* values measured in the ¹H NMR spectrum. The β -configuration on C-1''' anemic orientation of apiose was confirmed by comparing the ¹³C NMR spectra data of **1** with those of α -D- (δ_C 104.5) and β -D-apiofuranosides (δ_C 111.5), respectively¹², and the glucose had the β -con-

figuration according to the coupling constant (*J*=7.5 Hz) of H-1'' of glucose. The coupling constants observed between H-7' and H-8' (*J*=15.3 Hz) suggested that the (*E*)-coniferyl alcohol side-chain had a *trans*-configuration. The signals of H-7 and H-8 in the ¹H NMR spectrum appeared at slightly lower fields (δ_H 4.79 and 4.33, respectively) with a larger coupling constant (*J*=8.0 Hz) indicating a *trans*-orientation (axial-axial) of H-7 and H-8 pair in **1** (ref. 13). Comparison of the specific optical rotation of **1** with that of the known verticillatoside B (Ref. 14), suggested **1** to have the same absolute configurations of C-7 and C-8 as *S* and *S*, respectively. On these grounds, multifidoside A was elucidated as (7*S*, 8*S*)- $\Delta^{7'}$ -2,9'-dihydroxy-5'-methoxy-7,3'-dioxy-8,4'-neolignan-4-*O*- β -D-apiofuranosyl-(1→6)- β -D-glucopyranoside.

Compound **2** was obtained as white amorphous powder, possessing a molecular formula of C₂₈H₃₆O₁₅ by HR FAB-MS data (*m/z* 625.2132 [M+H]⁺, calcd for 624.2054), 14 mass units lower than that of **1**. Its UV-Vis, IR and MS spectra were very similar to those of **1**. The ¹³C NMR and DEPT spectra clearly displayed 29 carbon signals (5 × CH₂, 17 × CH, 7 × C). Comparing the NMR data with those of **1**, the

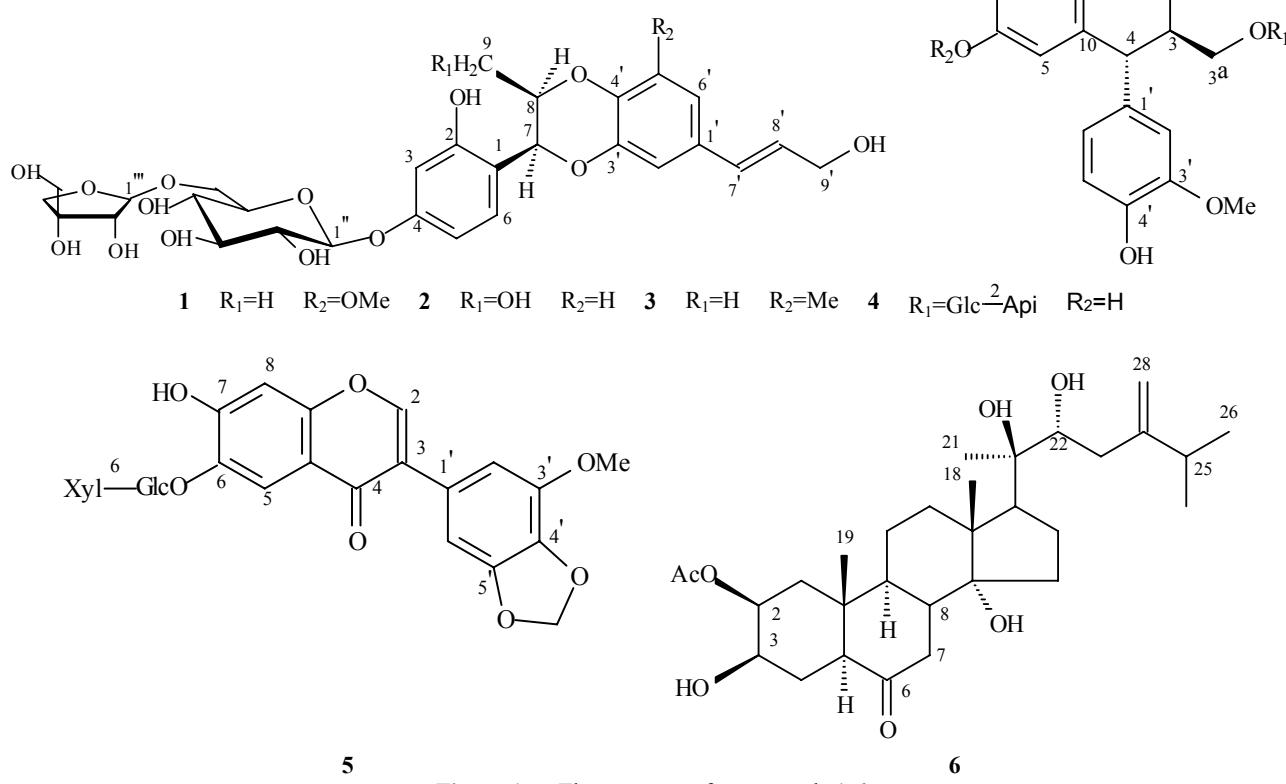


Figure 1 — The structure of compounds **1-6**

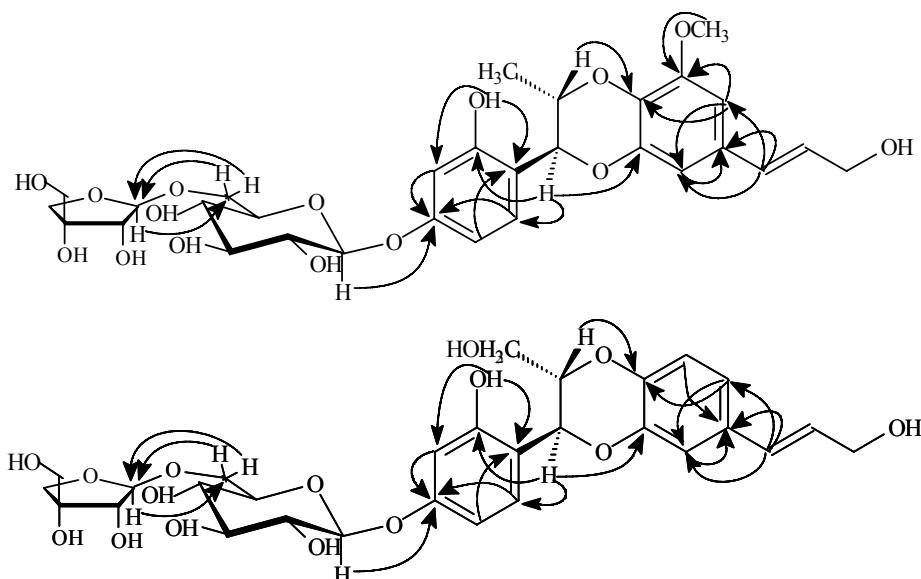


Figure 2 — The key HMBC correlations of compounds **1** and **2**

NMR signals of the sugar moiety were almost the same as those of **1**, except that an extra hydroxyl proton signal at δ_H 5.18 (HO-9) and an aromatic proton singlet at δ_H 6.82 (1H, d, $J=8.2$ Hz, H-5') was present in 1H NMR spectrum of **2**, and a methyl carbon signal (δ_C 17.2) disappeared and a methylene carbon signal (δ_C 60.8) appeared in the ^{13}C NMR and DEPT spectra of **2**. All these data indicated that a hydroxyl group is linked to C-9 and a methoxyl group disappeared from C-5' of **1** (Table I). It was further supported by the upfield shift signal of C-5' (from δ_C 149.0 to 117.3) and downfield shift signal of C-9 (from δ_C 17.2 to 60.8) in ^{13}C NMR spectra of **2** (Table I). The absolute configurations of C-7 and C-8 were determined as *S* and *S*, respectively, by comparison of the specific optical rotation of **2** with that of **1**. These data suggested **2** to be the analogue of **1**. Therefore, the structure of **2** was characterized as (7*S*, 8*S*)- Δ^7 -2,9,9'-trihydroxy-7,3'-dioxy-8,4'-neolignan-5-*O*- β -D-apiofuranosyl-(1 \rightarrow 6)- β -D-glucopyranoside.

The known compounds were identified by comparing their spectral data with reported values in the literature or their melting points and R_f values with authentic samples.

Experimental Section

General Procedures

Melting points were observed with a Chinese X-4 melting point apparatus and are uncorrected. Optical rotations were measured with Perkin-Elmer 241

digital polarimeter. UV-Vis and IR (KBr disks) spectra were obtained on Shimadzu UV-300 (double beam) and Alpha-Centauri FT-IR spectrometer. 1H and ^{13}C NMR (DEPT) spectra were recorded on Bruker AM-400 NMR spectrometer. Mass spectra were obtained on ZAB-HS and MAT-112 mass spectrometer, respectively. Separation and purification were performed by column chromatography over silica gel (100-200, 200-300 mesh). TLC was performed on silica gel GF₂₅₄ plates. The spots were visualized by UV (254 nm) and EtOH-H₂SO₄.

Plant Material

The roots of *P. multifida* Poir. were collected in August 2002, from Pingjiang district of Hunan Province, China. It was identified by Prof. Lian Yun-Shan (Department of Biology, Northwest Normal University). A voucher specimen (No.107083) of the plant is deposited in the Herbarium of the Botany Department, Northwest Normal University, Lanzhou, 730070, China.

Extraction and Isolation

The air-dried and powdered roots of *P. multifida* Poir. (5.0 kg) were soaked in 95% EtOH (15 L, 7 d \times 3) at RT. After removing the solvent, the crude extract (250 g) was suspended in warm water and partitioned successively with petroleum ether (60-90°C), CHCl₃, EtOAc and *n*-BuOH, concentrated under reduced pressure. The *n*-BuOH-soluble fraction was concentrated under reduced pressure to give 78.5

Table I — ^1H and ^{13}C NMR spectral data of compounds **1** and **2** (400 and 100 MHz, J_{Hz} , $\text{DMSO}-d_6$, TMS)*

No	δ_{H}	1			δ_{H}	2		
		δ_{C}	DEPT	HMBC(H→C)		δ_{C}	DEPT	HMBC(H→C)
1		131.2	C	3,6,5,7,HO-2		131.1	C	3,6,5,7,HO-2
2		154.8	C	3,6,7,HO-2		155.0	C	3,6,7,HO-2
3	2.42 (1H,d,2.4)	103.9	CH	HO-2,5	6.473 (1H,d,2.4)	104.0	CH	HO-2,5
4		145.8	C	1",3,5,6		145.9	C	1",3,5,6
5	6.44 (1H,dd,7.9,2.4)	108.7	CH	3,6	6.45 (1H,dd,7.9,2.4)	108.5	CH	3,6
6	6.96 (1H,d,7.9)	116.2	CH	5,7	6.96 (1H,d,7.9)	116.7	CH	5,7
7	4.79 (1H,d,8.0)	79.5	CH	8,6	4.76 (1H,d,8.0)	80.2	CH	8,6
8	4.33 (1H,dq,8.0,6.4)	72.9	CH	7,9	4.30 (1H,8.0,6.4)	73.8	CH	7,9
9	1.19 (3H,d,6.6)	17.2	CH ₃	8	3.76 (2H,br d,11.2)	60.8	CH ₂	8,OH-9
1'		131.2	C	2',6',7'		131.3	C	2',6',7',5'
2'	6.98 (1H,d,1.7)	110.8	CH	7',6'	6.93 (1H,d,1.7)	110.9	CH	7',6'
3'		143.6	C	2',7		143.4	C	2',7,5'
4'		135.5	C	6',8		136.7	C	6',8,5'
5'		149.0	C	CH ₃ O-,6'	6.82 (1H,d,8.2)	117.3	CH	6'
6'	6.83 (1H,d,1.7)	116.8	CH	2',7'	6.88 (1H,dd,1.7,8.2)	118.2	CH	2',5'
7'	6.39 (1H,d,15.3)	128.8	CH	2',6'	6.38 (1H,d,15.3)	128.6	CH	2',6'
8'	7.20 (1H,dd,15.3,5.7)	126.7	CH	9'	6.19 (1H,dd,15.3,5.7)	126.5	CH	9'
9'	4.03 (2H,brd,5.7)	61.5	CH ₂	8',HO-9'	4.02 (2H,brd,5.7)	61.6	CH ₂	8',HO-9'
HO-2		9.68 (1H,s)			9.70 (1H,s)			
HO-9					5.18 (1H,s)			
MeO-5'	3.76 (1H,s)	55.5	CH ₃					
Glc-1"	4.81 (1H,d, 7.5)	104.5	CH		4.82 (1H,d, 7.5)	104.6	CH	
2"	3.82 (1H,dd,9.1,7.4)	74.8	CH		3.82 (1H,d,9.1,7.4)	74.7	CH	
3"	3.77 (1H,dd,9.1,8.5)	77.5	CH		3.78 (1H,d,9.1,8.5)	77.5	CH	
4"	3.94 (1H,dd,9.9,8.5)	71.1	CH		3.94 (1H,dd,9.9,8.5)	71.0	CH	
5"	3.82 (1H,ddd,9.9,6.0,1.6)	77.2	CH		3.81(1H,dd,9.9,6.0,1.6)	77.1	CH	
6"	4.05 (1H,dd,11.3,1.6)	67.8	CH ₂	1"	4.06 (1H,dd,11.3,1.6)	68.0	CH ₂	1"
	3.96 (1H,dd,11.3,6.0)				3.94 (1H,dd,11.3,6.0)			
Api-1'''	5.28 (1H,d, 2.2)	111.1	CH	6"	5.27 (1H,d, 2.2)	111.0	CH	6"
2'''	4.29 (1H,d, 2.2)	77.8	CH		3.98 (1H,d, 2.2)	77.9	CH	
3'''		86.4	C			86.4	C	
4'''	3.75 (1H,d, 9.4)	75.0	CH ₂		3.77 (1H,d, 9.4)	75.1	CH ₂	
	3.96 (1H,d, 9.4)				3.95 (1H,d, 9.4)			
5'''	3.69 (2H,s)	65.8	CH ₂		3.68 (2H,s)	65.7	CH ₂	

g of residues, which was isolated on a silica gel column eluting with CHCl_3 -MeOH (8:0→1:5) in increasing polarity and combined by monitoring with TLC to give three fractions (A, B and C). Fraction A (3.9 g) was further fractionated over silica gel column and eluted with CHCl_3 -MeOH (4:1) to obtain **6** (21 mg). Fraction B (2.6 g) was purified by a silica gel column using CHCl_3 - MeOH (3:1→1:1) as elution gradient to afford **1** (15 mg) and **2** (12 mg). Fraction C (3.1 g) was rechromatographed over a silica gel column eluting with EtOAc-MeOH (3:1→2:1) to

yield **3** (9 mg) and subfraction. Subfraction was further purified by preparative TLC (silica gel) and developed with CHCl_3 -MeOH (1:1) as development to provide compound **4** (13 mg) and **5** (11 mg).

Compound **1**: White amorphous powder (MeOH), m.p. 216-18°C; $[\alpha]_D^{20}$ -11.2° (c=0.45, MeOH); HRFAB-MS: m/z 639.2289 $[\text{M}+\text{H}]^+$ (calcd. for $\text{C}_{30}\text{H}_{38}\text{O}_{15}$, 638.2211); UV-Vis $\lambda_{\text{max}}^{\text{MeOH}}$ (nm): 208, 266; IR (KBr): 3328 (OH), 1630 (olefinic C=C), 1601, 1516 cm^{-1} (phenyl); FAB-MS: m/z 639 $[\text{M}+\text{H}]$, 507

$[M+H-132]^+$ and 345 $[M+H-162-132]^+$; for 1H and ^{13}C NMR data see **Table I**.

Compound **2**: White amorphous powder (MeOH), m.p. 212–15°C; $[\alpha]_D^{20}$ -10.8° (c=0.45, MeOH); HRFAB-MS: m/z 625.2048 $[M+H]^+$ (calcd. for $C_{29}H_{36}O_{15}$, 624.2054); UV-Vis λ_{max}^{MeOH} (nm): 209, 266; IR (KBr): 3327(OH), 1628 (olefinic C=C), 1602, 1515 cm^{-1} (phenyl); FAB-MS: m/z 625 $[M+H]^+$, 493 $[M+H-132]^+$ and 331 $[M+H-162-132]^+$; for 1H and ^{13}C NMR data see **Table I**.

Acknowledgements

Author are grateful to Prof. Zheng Shang-zhen (College of Chemistry and Chemical Engineering, Northwest Normal University) for experimental assistance, and to the Educational Foundation of Gansu Province of China (Grant No. 2003039-04) for financial support.

References

- 1 Delectis florae reipublicae popularis sinicae agendae academiae sinicae edita, *Flora reipublicae popularis sinicae*. Tomus 3(1), (Science Press, Beijing), **1990**, p40.
- 2 Jiangsu New Medical College, *Dictionary of Traditional Chinese Drug*. (Science and Technology Press, Shanghai), **1985**, p487.
- 3 Lee H & Lin J Y, *Mutat Res/Genet Toxicol*, **204** (2), **1998**, 229.
- 4 Hu H B & Zheng X D, *Nat Prod Res Dev*, **16** (5), **2004**, 379.
- 5 Vardamides J C, Azebaze A G B, Nkengfack A E, Van Heerden F R, Fomum Z T, Ngando T M, Conrad J, Vogler B & Kraus W, *Phytochemistry*, **62**, **2003**, 647.
- 6 Kanchanapoom T, Chumsri P, Kasai R, Otsuka H & Yamasaki K, *Phytochemistry*, **63**, **2003**, 985.
- 7 Wang D Y, Zheng Z Z, Xu S Y & Zheng S Z, *J Asian Nat Prod Res*, **4**(4), **2002**, 303.
- 8 Zheng S Z, Yang H P, Ma X M & Shen X W, *Nat Prod Res*, **18**(5), **2004**, 403.
- 9 Hattori M, Yang X W, Shu Y Z, Kakiuchi N, Tezuka Y, Kikuchi T & Namba T, *Chem Pharm Bull*, **36**, **1988**, 648.
- 10 Cavalcante S H, Yoshida M & Gottlieb O R, *Phytochemistry*, **24**, **1985**, 1051.
- 11 Agrawal P K *Phytochemistry*, **31**, **1992**, 3307.
- 12 Kitagawa I, Hori K, Sakagami M, Hashiuchi F, Yoshikawa M & Ren J, *Chem Pharm Bull*, **41**, **1993**, 1350.
- 13 Fang J M, Lee C K & Cheng Y S, *Phytochemistry*, **31**, **1992**, 3659.
- 14 Su B N, Yang L & Jia Z J, *Phytochemistry*, **45**, **1997**, 1271.